Основы теории нейронных сетей

Заказать - ангары из металлоконструкций в Санкт-Петербурге и пригороде на заказ. | Заказать сборка конструкции из металла в Анапе и пригороде. Металлоконструкции на заказ.

Персептронная представляемость


Доказательство теоремы обучения персептрона показало, что персептрон способен научиться всему, что он способен представлять. Важно при этом уметь различать представляемость и обучаемость. Понятие представляемости относится к способности персептрона (или другой сети) моделировать определенную функцию. Обучаемость же требует наличия систематической процедуры настройки весов сети для реализации этой функции.

Для иллюстрации проблемы представляемости допустим, что у нас есть множество карт, помеченных цифрами от 0 до 9. Допустим также, что мы обладаем гипотетической машиной, способной отличать карты с нечетным номером от карт с четным номером и зажигающей индикатор на своей панели при предъявлении карты с нечетным номером. Представима ли такая машина персептроном? То есть возможно ли сконструировать персептрон и настроить его веса (неважно, каким образом) так, чтобы он обладал такой же разделяющей способностью? Если это достижимо, то говорят, что персептрон способен представлять желаемую машину. Мы увидим, что возможности представления однослойными персептронами весьма ограниченны. Имеется много простых машин, которые не могут быть представлены персептроном, независимо от того, как настраиваются его веса.




Начало  Назад  Вперед



Книжный магазин