Основы теории нейронных сетей

Электрик сделает установка электрики в офисе Анапа и пригороде. Русский электрик. | Выполним устрановка металлокаркас Новосибирск и пригороде. Металлоконструкции на заказ. | Выполним проводка, заделка Новокузнецк и пригороде. Электромонтажные работы.

Двуслойность персептрона


Как уже упоминалось в начале лекции, алгоритм обучения персептрона возможно использовать и для многослойных персептронов. Однако теоремы о сходимости и зацикливании персептрона, приведенные выше, верны только при обучении однослойного персептрона — или многослойного персептрона при условии, что обучаются только веса персептрона, стоящего в последнем слое сети. В случае произвольного многослойного персептрона они не работают. Следующий пример демонстрирует основную проблему, возникающую при обучении многослойных персептронов.

Пусть веса всех слоев персептрона в ходе обучения сформировались так, что все примеры обучающего множества, кроме первого, решаются правильно. При этом правильным ответом первого примера является 1. Все входные сигналы персептрона последнего слоя равны нулю. В этом случае первое правило не дает результата, поскольку все нейроны предпоследнего слоя не активны. Существует множество способов решать эту проблему. Однако все эти методы не являются регулярными и не гарантируют сходимость многослойного персептрона к решению, даже при условии, что такое решение существует.

В действительности, проблема настройки (обучения) многослойного персептрона решается следующей теоремой.

Теорема о двуслойности персептрона. Любой многослойный персептрон может быть представлен в виде двуслойного персептрона с необучаемыми весами первого слоя.

Для доказательства этой теоремы потребуется одна теорема из математической логики.

Теорема о дизъюнктивной нормальной форме. Любая булева функция булевых аргументов может быть представлена в виде дизъюнкции конъюнкций элементарных высказываний и отрицаний элементарных высказываний:

 f=\vee (\&\; x_i \;\& \;\neg x_j).

Напомним некоторые свойства дизъюнктивной нормальной формы.

Свойство 1. В каждый конъюнктивный член (слагаемое) входят все элементарные высказывания либо в виде самого высказывания, либо в виде его отрицания.

Свойство 2. При любых значениях элементарных высказываний в дизъюнктивной нормальной форме может быть истинным не более одного конъюнктивного члена (слагаемого).




Начало  Назад  Вперед



Книжный магазин