Основы теории нейронных сетей


Как обучается многослойный персептрон - часть 2


В задачах классификации выходной элемент должен выдавать сильный сигнал в случае, если данное наблюдение принадлежит к интересующему нас классу, и слабый — в противоположном случае. Иначе говоря, этот элемент должен стремиться смоделировать функцию, равную единице в области пространства объектов, где располагаются объекты из нужного класса, и равную нулю вне этой области. Такая конструкция известна как дискриминантная функция в задачах распознавания. "Идеальная" дискриминантная функция должна иметь плоскую структуру: точки соответствующей поверхности будут располагаться либо на нулевом уровне, либо на высоте "единица".

Если сеть не содержит скрытых элементов, то на выходе она может моделировать только одинарный "сигмовидный склон": точки, находящиеся по одну его сторону, располагаются низко, по другую — высоко. При этом всегда будет существовать область между ними (на склоне), где высота принимает промежуточные значения, но по мере увеличения весов эта область будет сужаться.

Такой сигмовидный склон фактически работает как линейная дискриминантная функция. Точки, лежащие по одну сторону склона, классифицируются как принадлежащие нужному классу, а лежащие по другую сторону — как не принадлежащие. Следовательно, сеть без скрытых слоев может служить классификатором только в линейно-отделимых задачах: когда можно провести линию (или, в случае более высоких размерностей, гиперплоскость), разделяющую точки в пространстве признаков.

Сеть, содержащая один промежуточный слой, строит несколько сигмоидных склонов, — по одному для каждого скрытого элемента, — и затем выходной элемент комбинирует из них "возвышенность". Эта возвышенность получается выпуклой, т.е. не содержащей впадин. При этом в некоторых направлениях она может уходить на бесконечность (как длинный полуостров). Подобная сеть может моделировать большинство реальных задач классификации.

Сеть с двумя промежуточными слоями строит комбинацию из нескольких таких возвышенностей.




Начало  Назад  Вперед



Книжный магазин