Основы теории нейронных сетей


Как обучается многослойный персептрон - часть 3


Их будет столько, сколько элементов во втором слое, и у каждой из них будет столько сторон, сколько элементов было в первом скрытом слое. После несложного размышления делаем вывод, что, используя достаточное число таких возвышенностей, можно воспроизвести поверхность любой формы — в том числе с впадинами и вогнутостями.

Как следствие наших рассмотрений мы получаем, что, теоретически, для моделирования любой задачи достаточно многослойного персептрона с двумя промежуточными слоями (в точной формулировке этот результат известен как теорема Колмогорова). При этом может оказаться, что для решения некоторой конкретной задачи будет более простой и удобной сеть с еще большим числом слоев. Однако для решения большинства практических задач достаточно всего одного промежуточного слоя, два слоя применяются как резерв в особых случаях, а сети с тремя слоями практически не применяются.

В задачах классификации очень важно понять, как следует интерпретировать те точки, которые попали на склон или лежат близко от него. Стандартный подход заключается в том, чтобы для пороговых значений установить некоторые доверительные пределы (принятия или отвержения), которые должны быть достигнуты, чтобы данный элемент считался "принявшим решение". Например, если установлены пороги принятия/отвержения 0,95/0.05, то при уровне выходного сигнала выше 0,95 элемент считается активным, при уровне ниже 0,05 — неактивным, а в промежутке — "неопределенным". Имеется и более тонкий (и, вероятно, более полезный) способ интерпретировать уровни выходного сигнала: считать их вероятностями. В этом случае сеть выдает несколько большую информацию, чем просто "да/нет": она сообщает нам, насколько (в некотором формальном смысле) мы можем доверять ее решению. При этом, однако, вероятностная интерпретация обоснована только в том случае, если выполняются определенные предположения о распределении исходных данных (конкретно, что данные являются выборкой из некоторого распределения, принадлежащего к семейству экспоненциальных распределений).Здесь, как и ранее, может быть принято решение по классификации, но, кроме того, вероятностная интерпретация позволяет ввести концепцию "решения с минимальными затратами".




Начало  Назад  Вперед



Книжный магазин