Основы теории нейронных сетей


Ассоциативность памяти и задача распознавания образов - часть 2


В нашей лекции особенности решения этой задачи нейронной сетью Хопфилда будут продемонстрированы на примерах, которые получены с использованием модели сети на персональной ЭВМ.

В рассматриваемой модели сеть содержала 100 нейронов, упорядоченных в матрицу

10\times 10
. Сеть обучалась по правилу Хебба на трех идеальных образах — шрифтовых начертаниях латинских букв M, A и G (см. рис. 8.3). После обучения нейросети в качестве начальных состояний нейронов предъявлялись различные искаженные версии образов, которые в дальнейшем эволюционировали с последовательной динамикой к стационарным состояниям.


Рис. 8.3. 

Для каждой пары изображений на рисунке 8.4, левый образ является начальным состоянием, а правый — результатом работы сети, достигнутым стационарным состоянием.

Образ на рис. 8.4(А) был выбран для тестирования адекватности поведения на идеальной задаче, когда предъявленное изображение точно соответствует информации в памяти. В этом случае за один шаг было достигнуто стационарное состояние. Образ на рис. 8.4(Б) характерен для задач распознавания текста независимо от типа шрифта. Начальное и конечное изображения безусловно похожи, но попробуйте это объяснить машине!


Рис. 8.4. 

Задания на рис. 8.4(В, Г) характерны для практических приложений. Нейросетевая система способна распознавать практически полностью зашумленные образы. Задачи, соответствующие рисункам 8.4(Д, Е), демонстрируют замечательное свойство сети Хопфилда: она способна ассоциативно узнавать образ по его небольшому фрагменту. Важнейшей особенностью работы сети является генерация ложных образов. Пример ассоциации к ложному образу показан на рис. 8.4(Ж). Ложный образ является устойчивым локальным экстремумом энергии, но не соответствует никакому идеальному образу. Он является в некотором смысле собирательным образом, наследующим черты идеальных собратьев. Ситуация с ложным образом эквивалентна нашему "Где-то я уже это видел".

В данной простейшей задаче ложный образ является "неверным" решением и поэтому вреден.Однако можно надеяться, что такая склонность сети к обобщениям может быть как-то использована. Характерно, что при увеличении объема полезной информации (сравните рис. 8.4 (Е) и (Ж))

исходное состояние попадает в область притяжения требуемого стационарного состояния, и образ распознается.




Начало  Назад  Вперед



Книжный магазин