Основы теории нейронных сетей



       Дешевый костюм деда мороза узнать больше. | Чистка ковров и мягкой мебели на сайте http://чистый-дом-пермь.рф. |   

Обучение когнитрона


Так как когнитрон реализован в виде многослойной сети, возникают сложные проблемы обучения, связанные с выбранной структурой. Получая обучающий набор входных образов, сеть самоорганизуется посредством изменения силы синаптических связей. При этом отсутствуют предварительно определенные выходные образы, представляющие требуемую реакцию сети, однако сеть самонастраивается с целью распознавания входных образов с замечательной точностью.

Алгоритм обучения когнитрона является концептуально привлекательным. В заданной области слоя обучается только наиболее сильно возбужденный нейрон. Автор сравнивает это с "элитным обучением", при котором обучаются только "умные" элементы. Те нейроны, которые уже хорошо обучены, что выражается силой их возбуждения, получат приращение силы своих синапсов с целью дальнейшего усиления своего возбуждения.

На рис. 13.2 показано, что области связи соседних узлов значительно перекрываются. Такое расточительное дублирование функций оправдывается взаимной конкуренцией между ближайшими узлами. Даже если узлы в начальный момент имеют абсолютно идентичный выход, небольшие отклонения всегда случаются; один из узлов всегда будет иметь более сильную реакцию на входной образ, чем соседние. Его сильное возбуждение будет оказывать сдерживающее воздействие на возбуждение соседних узлов, и усиливаться будут только его синапсы — синапсы соседних узлов останутся неизменными.


Рис. 13.2. 

Возбуждающий нейрон.

Можно сказать, что выход возбуждающего нейрона в когнитроне определяется отношением его возбуждающих входов к тормозящим входам. Эта необычная функция имеет важные преимущества, как практические, так и теоретические. Суммарный возбуждающий вход в нейрон является взвешенной суммой входов от возбуждающих входов в предшествующем слое. Аналогично суммарный вход является взвешенной суммой входов от всех тормозящих нейронов. В символьном виде

 E=\sum_i a_i u_i,\quad I=\sum_j b_j v_j,

где

a_i
— вес
i
-го возбуждающего синапса,
u_i
— выход
i
-го возбуждающего нейрона,
b_j
— вес
j
-го торозящего синапса,
v_j
— выход
j
-го торозящего нейрона.




Содержание  Назад  Вперед