Основы теории нейронных сетей



         

Обучение выходной звезды


В то время как входная звезда возбуждается всякий раз при появлении определенного входного вектора, выходная звезда имеет дополнительную функцию: она вырабатывает требуемый возбуждающий сигнал для других нейронов всякий раз, когда возбуждается.

Для того чтобы обучить нейрон выходной звезды, его веса настраиваются в соответствии с требуемым целевым вектором. Алгоритм обучения может быть представлен символически следующим образом:

 w_i(t+1)=w_i(t)+\beta[y_i-w_i(t)],

где

\beta
представляет собой нормирующий коэффициент обучения, который вначале приблизительно равен единице и постепенно уменьшается до нуля в процессе обучения.

Как и для входной звезды, веса выходной звезды постепенно настраиваются над множеством векторов, представляющих собой обычные вариации идеального вектора. В этом случае выходной сигнал нейронов является статистической характеристикой обучающего набора и может в действительности сходиться в процессе обучения к идеальному вектору при предъявлении только искаженных версий вектора.




Содержание  Назад  Вперед